Rational points near manifolds and metric Diophantine approximation
نویسنده
چکیده
This work is motivated by problems on simultaneous Diophantine approximation on manifolds, namely, establishing Khintchine and Jarńık type theorems for submanifolds of Rn. These problems have attracted a lot of interest since Kleinbock and Margulis proved a related conjecture of Alan Baker and V.G. Sprindžuk. They have been settled for planar curves but remain open in higher dimensions. In this paper, Khintchine and Jarńık type divergence theorems are established for arbitrary analytic non-degenerate manifolds regardless of their dimension. The key to establishing these results is the study of the distribution of rational points near manifolds – a very attractive topic in its own right. Here, for the first time, we obtain sharp lower bounds for the number of rational points near non-degenerate manifolds in dimensions n > 2 and show that they are ubiquitous (that is uniformly distributed).
منابع مشابه
Ergodic Theory on Homogeneous Spaces and Metric Number Theory
Article outline This article gives a brief overview of recent developments in metric number theory, in particular, Diophantine approximation on manifolds, obtained by applying ideas and methods coming from dynamics on homogeneous spaces. Glossary 1. Definition: Metric Diophantine approximation 2. Basic facts 3. Introduction 4. Connection with dynamics on the space of lattices 5. Diophantine app...
متن کاملOpen Diophantine Problems
Diophantine Analysis is a very active domain of mathematical research where one finds more conjectures than results. We collect here a number of open questions concerning Diophantine equations (including Pillai’s Conjectures), Diophantine approximation (featuring the abc Conjecture) and transcendental number theory (with, for instance, Schanuel’s Conjecture). Some questions related to Mahler’s ...
متن کاملA Jarník Type Theorem for Planar Curves: Everything about the Parabola
The well known theorems of Khintchine and Jarník in metric Diophantine approximation provide a comprehensive description of the measure theoretic properties of real numbers approximable by rational numbers with a given error. Various generalisations of these fundamental results have been obtained for other settings, in particular, for curves and more generally manifolds. In this paper we develo...
متن کاملDiophantine Exponents of Measures: a Dynamical Approach
We place the theory of metric Diophantine approximation on manifolds into a broader context of studying Diophantine properties of points generic with respect to certain measures on Rn. The correspondence between multidimensional Diophantine approximation and dynamics of lattices in Euclidean spaces is discussed in an elementary way, and several recent results obtained by means of this correspon...
متن کامل