Rational points near manifolds and metric Diophantine approximation

نویسنده

  • Victor Beresnevich
چکیده

This work is motivated by problems on simultaneous Diophantine approximation on manifolds, namely, establishing Khintchine and Jarńık type theorems for submanifolds of Rn. These problems have attracted a lot of interest since Kleinbock and Margulis proved a related conjecture of Alan Baker and V.G. Sprindžuk. They have been settled for planar curves but remain open in higher dimensions. In this paper, Khintchine and Jarńık type divergence theorems are established for arbitrary analytic non-degenerate manifolds regardless of their dimension. The key to establishing these results is the study of the distribution of rational points near manifolds – a very attractive topic in its own right. Here, for the first time, we obtain sharp lower bounds for the number of rational points near non-degenerate manifolds in dimensions n > 2 and show that they are ubiquitous (that is uniformly distributed).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ergodic Theory on Homogeneous Spaces and Metric Number Theory

Article outline This article gives a brief overview of recent developments in metric number theory, in particular, Diophantine approximation on manifolds, obtained by applying ideas and methods coming from dynamics on homogeneous spaces. Glossary 1. Definition: Metric Diophantine approximation 2. Basic facts 3. Introduction 4. Connection with dynamics on the space of lattices 5. Diophantine app...

متن کامل

Open Diophantine Problems

Diophantine Analysis is a very active domain of mathematical research where one finds more conjectures than results. We collect here a number of open questions concerning Diophantine equations (including Pillai’s Conjectures), Diophantine approximation (featuring the abc Conjecture) and transcendental number theory (with, for instance, Schanuel’s Conjecture). Some questions related to Mahler’s ...

متن کامل

A Jarník Type Theorem for Planar Curves: Everything about the Parabola

The well known theorems of Khintchine and Jarník in metric Diophantine approximation provide a comprehensive description of the measure theoretic properties of real numbers approximable by rational numbers with a given error. Various generalisations of these fundamental results have been obtained for other settings, in particular, for curves and more generally manifolds. In this paper we develo...

متن کامل

Diophantine Exponents of Measures: a Dynamical Approach

We place the theory of metric Diophantine approximation on manifolds into a broader context of studying Diophantine properties of points generic with respect to certain measures on Rn. The correspondence between multidimensional Diophantine approximation and dynamics of lattices in Euclidean spaces is discussed in an elementary way, and several recent results obtained by means of this correspon...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009